一个典型的神经元

- Axon 轴突
- Dendritic tress 树突
- Axon hillock 轴突体
线性神经元
$$y = b+\sum_ix_iw_i$$

二进制阈值神经元
对线性加权运算的结果,进行阈值判定
$$z = b+\sum_ix_iw_i$$ $$\begin{equation} y = \left\{ \begin{array}{rl} 1 & \mbox{if } z \geq 0, \\ 0 &
分类目录归档:学习
核心思想:三个臭皮匠顶个诸葛亮
集成学习三步走
- 特征抽取
- 反复建模(弱学习器)
- 模型集成(强学习器)
最终的预测输出 = 若干个弱学习器的预测输出的平均
最终的预测输出 = 若干个弱学习器的预测输出的投票结果
- 常见的几种投票法
- 相对多数投票法:少数服从多数
- 绝
决策树通过树结构存储判断流程和规则,实现复杂规则的有效记录
一般来说,树的非叶节点存储了判断逻辑,并通过树分支表达多个判断结果 通过自上而下的多层逻辑判断,最终在叶节点输出预测的分类结果
决策树示例:

ID3算法主要利用信息增益进行特征的选择,并通过递归方法构建特征
XML 指的是可扩展标记语言(eXtensible Markup Language),和json类似也是用于存储和传输数据,还可以用作配置文件。类似于HTML超文本标记语言,但是HTML所有的标签都是预定义的,而xml的标签可以随便定义。
<!--注释-->
<book category="python">
<title> xml test <\title>
<\bo贝叶斯定理: $$P(B|A)=\frac{P(A,B)}{P(A)}=\frac{P(A|B)P(B)}{P(A)}$$
朴素贝叶斯(Naive Bayes classifier)以贝叶斯定理为基础的简单分类器,主要通过统计历史数据中各种事件的发生频率,并从中寻找统计上的相关性,以实现
粒子群优化(particle swarm optimization,PSO)算法是计算智能领域的一种群体智能的优化算法(其他群体算法举例:蚁群算法,鱼群算法等),该算法最早由Kennedy和Eberhart在1995年提出的,该算法源自对鸟类捕食问题的研究。
鸟类捕食的生物过程:
局部线性嵌入(Locally Linear Embedding,以下简称LLE)是一种重要的降维方法。
和传统的PCA,LDA等关注样本方差的降维方法相比,LLE关注于降维时保持样本局部的线性特征,由于LLE在降维时保持了样本的局部特征,LLE广泛的用于图像图像识别,高维数据可视化等领域。
下图对LLE的原理进行了一个整体描述:
